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ABSTRACT

To get the most out of computers, human-machine 
interfaces should ideally use a language that human design-
ers are already familiar with. Unfortunately, most traditional 
software deploys a highly abstract and low-level syntax that 
is designed to be easily understood by a computer but not by 
a person. This makes computer-aided creation inaccessible 
and inefficient.

Moving through disentangled latent vector spaces 
of generative deep learning networks has recently allowed 
us to independently manipulate a vast amount of fuzzy 
high-level parameters that can describe an equally large 
amount of design decisions the way humans naturally do.

This thesis combines a graphical user interface 
with a tactile hardware controller to simultaneously control 
an arbitrary amount of user-defined parameters for semantic 
image editing with generative adversarial networks. The re-
sult is a system that can precisely edit synthetic images from 
any visual domain with fuzzy text prompts, allowing people 
with limited technical knowledge to utilize their rich natural 
language abilities to iteratively design complex imagery with 
unprecedented speed in a non-destructive manner.

1 MOTIVATION

The complex nature of how humans experience 
reality allows them to precisely communicate highly nuanced 
concepts. A musician may describe a composition as wild 
and ambitious, young and free or a cymbal as dry or wet. 
Likewise, an art critic could claim a painting to be misogynist 
or unsettling, and a fashion designer may view a dress as ei-
ther progressive or nostalgic. The sheer amount of combined 
emotions, tastes, and shared experiences that can serve as 
easily interpretable analogies allow people to articulate ideas 
with tremendous precision. Due to shared human experienc-
es, many cultures naturally associate warm tones, colors, or 
personalities as comforting and pleasant, while cold things 
are perceived as disheartening, distant, and provocative, re-
gardless of whether the object in question can actually have 
a temperature. Such terminologies are here considered fuzzy 
and high-level as they are representational phrases that can-
not be objectively connected to a single property.

The ability to communicate with fuzzy language is 
crucial for creating complex artifacts with other humans and 
machines. This can be illustrated with a hypothetical interac-
tion between an architect and a client planning a modern mu-
seum at a port. The client has a specific vision for the style of 
the desired building but lacks the ability to express it in a con-
crete way with objective low-level parameters like exact mea-
surements. Instead of presenting the architect with a floor 
plan or 3D model, the client would rather vocally describe 
their idea as a “flowing silhouette with a facade shining like 
the waves of the surrounding water”. This single sentence 
directly informs a large range of decisions the architect has 
to make, from the appearance of the building, over material 
choice, to the layout of the building even though the client did 
not explicitly specify any of these factors.

This highly efficient way of communication can also 
benefit people who browse artifacts rather than create them. 
An obscure yet successful example can be found in a recent 
trend on the video-sharing platform YouTube. Here, some us-
ers are compiling music lists where the chosen tracks are not 
aligned by artist or genre but by a specific emotion they evoke. 
To communicate the content of the playlist, the creators give 
them highly-abstracted titles such as “this playlist will make 
you feel like a greek goddess in a ruin garden” – a collection 
of dreamy piano pieces and enchanting lullabies. A playlist ti-
tled “You’re in love with the villain of the story” consists of 
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tragic classics full of gloomy strings while “random burst of 
energy at 2am” is a compilation of bright, noisy, and intense 
electronic hyperpop.

Although these metaphorical titles are discon-
nected from any objective properties of the chosen music, 
they still manage to be highly descriptive. When combined 
with a thumbnail that visually encompasses the selected at-
mosphere, such forms of describing music can convey the 
acoustic content significantly better than the titles of the 
music pieces or the names of the artists.

Traditional design software, in contrast, cannot 
interpret such language as it instead operates with low-level 
syntaxes that can take years to master. This comes at great 
expense and inaccessibility. The previously mentioned fic-
tional architect, for example, would have to work together 
with skilled 3D artists that tenaciously translate the client’s 
fuzzy description into cartesian coordinates of digital verti-
ces, normal maps of virtual materials, or integers that deter-
mine the appearance of some mesh. The ability to express 
an idea through artificial media with a computer is thus re-
served for an elite that has the resources required to learn 
and practice computer-aided creation.

2. SEMANTIC IMAGE GENERATION WITH DEEP LEARNING

Recent leaps in generative deep learning, however, 
have revealed that even self-supervised models can automat-
ically learn representations of high-level parameters. Such 
models are trained on large datasets, often images, which 
they can reproduce after a long training process. Generative 
adversarial networks, or GANs (Goodfellow et al. 2014), vari-
ational autoencoders (VAEs) (Kingma and Welling 2013), and 
diffusion models (Sohl-Dickstein et al. 07--09 Jul 2015; Dhari-
wal and Nichol 2021; Ramesh et al. 2022) are among the most 
successful types of generative frameworks, capable of creat-
ing completely novel images of faces, cars, and landscapes 
that are virtually indistinguishable from real ones.

Despite revolutionizing the way computers gener-
ate imagery, the initially random nature of synthesis with deep 
learning made these models unsuitable for controlled design 
processes where the machine has to follow the intentions of a 
human designer.

Recently, Radford et al. (18--24 Jul 2021) intro-
duced the highly influential “Contrastive Language-Image 

Pretraining” (CLIP) model, a system trained on 400 million 
image-text pairs to predict how related a text description is to 
an image.

CLIP greatly accelerated research on semantic im-
age synthesis. When combined with a generative framework, 
it can allow users to generate an image from a text prompt 
describing the desired image (Ramesh et al. 18--24 Jul 2021). 
By using CLIP as a discriminator rating generated images 
against the text prompt, a system can gradually optimize for 
this rating until a satisfactory image is found.

Unfortunately, there is no single image that unique-
ly satisfies a text description unless the prompt is exceeding-
ly long and specific. Even if this would be the case, designers 
naturally want to adjust a result to explore multiple design 
directions or to incorporate changes that a collaborator or 
the designer itself desires. The limitations of communication 
and interactive tools already prevent human designers from 
perfectly interpreting the intentions of another collaborating 
human. In some cases, a person may even fail to be satisfied 
with a creation of their own, even if it suits their original inten-
tion, as the human imagination often lacks the resolution of a 
concrete artifact. Assuming that a machine can simply gener-
ate a perfect image from a single input is unrealistic.

Digital design tools must therefore allow for itera-
tive adjustments. The randomness and inability to gradually 
edit parts of a resulting image make simple text-to-image 
approaches insufficient no matter their ability to interpret a 
target description.

3 DISENTANGLEMENT OF LATENT VECTOR SPACES

A breakthrough came with the observation of 
disentangled characteristics of the high-dimensional latent 
vector spaces of GANs (Chen et al. 2016; Esser, Rombach, 
and Ommer 2020; Lin et al. 2019; Kazemi, Iranmanesh, and 
Nasrabadi 2019). Disentanglement refers to the indepen-
dence of semantically meaningful parameters inside be-
spoke latent space. If such a space is disentangled, it tends 
to have spatial directions that exclusively affect individual 
properties of the generated output. Moving along such a di-
rection can correspond to the change in the hair length of a 
generated face or the color of an artificial car. Further obser-
vations revealed that this also includes fuzzy parameters like 
the sportiness of a car, the happiness of a face, or even the 
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degree to which an artificial person looks like Taylor Swift. 
This opened up the possibility to independently edit a vast 
amount of parameters by simply moving along their respec-
tive dimensions in the latent vector space.

4 STYLECLIP GLOBAL DIRECTIONS

Finding and labeling semantically meaningful di-
rections remained a challenge. Initially, this process either 
required manual inspection and annotation or pre-trained 
classifiers. Both severely limit the number of accessible 
parameters. In order to leverage the unique advantages of 
self-supervised deep learning, a system must be able to au-
tomatically scale with more parameters and datasets.

In their paper “StyleCLIP’, Patashnik et al. (2021) 
demonstrate that directions in the high-dimensional vector 
space of CLIP’s pre-trained neural networks could be trans-
posed to the vector space of a GAN. This idea is spawned 
from the assumption that despite inherent differences be-
tween a vector space of text embeddings and a vector space 
of image embeddings, both can share semantically mean-
ingful global directions that have high cosine similarity. The 
manifolds of CLIP’s text embeddings and image embed-
dings could thus be normalized to allow a user to map the di-
rection Δt, representing a direction from a neutral to a target 
text prompt, from CLIP’s language-image embedding space 
to StyleGAN’s (Karras, Laine, and Aila 2019; Karras, Laine, et 
al. 2020) stylespace S. In theory, this finding allows a user to 
visually manipulate a GAN-based image with every semantic 
parameter that CLIP encodes.

The unique advantage of these global directions 
is the ability to universally change images in real-time with 
a nearly unlimited amount of text prompts. In contrast, loss-
based optimization usually requires gradient descent over 
many generated images until a satisfactory one is found, es-
sentially brute-forcing the way to a target. This can take min-
utes and is therefore unsuitable for a rapid iterative design 
process. More importantly, most previous works on semantic 
image editing with generative deep learning are limited to a 
preset number of parameters. This inhibits the advantage of 
using deep learning for media editing, as conventional soft-
ware systems already offer a range of precise parameters by 
manually engineering a desired programmatic function.

Allowing users to spontaneously utilize thousands of fuzzy semantic 
parameters with minimal preprocessing has been previously unheard of in the 
world of computational image processing. Discoveries like global directions for 
semantic image editing mark a milestone in the pursuit of aligning the interfaces 
of computational design systems with traditional human-human communication.

5 A GRAPHICAL USER INTERFACE FOR RAPID SEMANTIC IMAGE 
GENERATION AND EDITING

To make the advantages of StyleCLIP accessible 
to designers and artists, I developed a dynamic graphical 
user interface (GUI). Similar to the GUI that Patashnik et al. 
(2021) propose, users can set a neutral prompt and a target 
prompt. The former should describe the visual content of the 
GAN-generated base image while the latter describes the 
desired change in the target image. Users can determine the 
intensity α of this change, as well as how many aspects of the 
image should be changed through the threshold parameter 
β. A high β threshold will only touch the most relevant parts 
of the base image. For example, when manipulating the tar-
get prompt brown eyes on an artificial face with a high β value, 
only the color of the iris will change while a low β value may 
also affect the nose, wrinkles, and even the gaze of the face. 
The broad nature of some target prompts may require a low 
β threshold by default. When a face is supposed to look more 
surprised, for example, StyleCLIP would ideally change a 
range of visual elements, including raising eyebrows, adding 
wrinkles on the forehead, and opening the mouth.

6 CONVENTIONAL INTERFACES LIMIT DEEP LEARNING BASED 
IMAGE EDITING

Having access to a large number of arbitrary vari-
ables renders traditional controllers like mice and cursors 
insufficient. The use of such traditional interfaces makes im-
age synthesis with systems like GauGAN (Park et al. 2019), 
DALL-E (Ramesh et al. 18--24 Jul 2021), or even StyleCLIP’s 
GUI hard to use and inefficient. GauGAN requires the user to 
draw semantic masks that get translated into a photorealistic 
style. This process is tedious with an inaccurate touchpad or 
mouse and only works well with domains that do not require 
precise masks such as landscapes. While it replicates the 
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GauGAN’s graphical user interface. A user has to paint a 
simple semantic segmentation on the left side and can translate the 
composition into a range of photorealistic styles as seen on the right.

widespread use of sketches as a form of communication, it 
does not allow to iterate the result with fuzzy parameters that 
apply to the overall appearance rather than clearly defined 
parts of the image. Systems like DALL-E are outstanding at 
generating images that fit even highly specific text prompts. 
However, editing is limited to the binary presence of objects 
in bespoke prompts. A gradual control over the intensity of 
parameters does not exist. Additionally, each change re-
quires the user to type in a new text, making an iterative de-
sign process mentally demanding due to the effort associat-
ed with typing on a keyboard. StyleCLIP already offers a GUI 
to change a single prompt with one pair of α and β controllers. 
The interface consists of just one slider which may change a 
parameter that conveys a multitude of visual aspects but is 
still limiting as it requires a prompt to contain every desired 
change. Controlling the individual intensity of each of these 
changes is therefore not supported. Lastly, most interfaces 
rely on a cursor that can only be at one place at a time. This 
slows the design process down further by making simultane-
ous control of multiple parameters impossible.

These limitations are detrimental to the user experience because of 
the uncertain nature of how artificial intelligence creates output. Due to the novel-
ty of writing to a computer what it should design, users often feel overwhelmed as 
they expect a clear syntax, the way they are used to from conventional software.

More importantly, it is often not given that a system actually interprets 
input the way the user intends to. Targeted image generation with deep learning, 
therefore, requires speculation and a lot of iteration. In fact, many semantic inter-
faces for generative models have unpredictable preferences for specific phrases 
and grammar while the models themselves have significant limits to what they are 
able to generate in the first place. Combined, these factors create a need for sys-
tems that allow designers to quickly experiment with multiple target prompts and 
their intensity to achieve an intuitive, rapid, and precise design process.

7 A HIGH DOF CONTROLLER FOR SEMANTIC IMAGE EDITING

Given the sheer amount of possible parameters 
that can be manipulated with generative models, interfac-
es must therefore allow users to quickly specify and edit a 
large set of parameters in parallel. I propose the use of input 
controllers with high degrees of freedom (DOF) as a solution 
to this problem. A high-DOF system allows its user to inde-
pendently control multiple inputs simultaneously. This proj-
ect proposes a system that accepts MIDI sliders, traditionally 
used in music production, to simultaneously control the α and 
β values of multiple user-defined semantic parameters. The 
MIDI controller used in this project contains five mechanical 
sliders and five knobs and is connected to a computer via 
USB. A graphical user interface, visually resembling that slid-
er, is displayed on a monitor where a user can enter a target 
prompt for each slider. The same GUI can be used to add and 
remove parameters dynamically.

Once a prompt has been entered, the correspond-
ing hardware slider will control how prominent that parame-
ter is in the edited image by adjusting StyleCLIP’s α value. A 
knob above each slider determines the β threshold. If multiple 
parameters are used, each global direction matrix is comput-
ed, added together, and normalized. A change in a slider will 
trigger this computation, generate an image, encode it, and 
send it to the web frontend in real-time.

The visual domain of the generated image can be 
selected by choosing from a list of pre-trained StyleGAN 2 
(Karras, Laine, et al. 2020) models. A new random image is 
generated each time a user clicks on one of the models.



9 Pixel Alchemist 10

8 PRE-TRAINED MODELS

These models include faces, cars, landscapes, 
portrait paintings, and modern graphic design posters. Each 
dataset requires a few hours of preprocessing on a GPU such 
as an NVIDIA P100. The custom design poster dataset has 
been trained on 7445 hand-selected posters from profes-
sional designers and studios1 using two NVIDIA A100 GPUs 
and a StyleGAN 2 architecture with adaptive discriminator 
augmentation (Karras, Aittala, et al. 2020).

The visual designs of the real posters are distinc-
tively experimental and feature complex compositions with 
high degrees of asymmetry and diverse color palettes. I 
choose this type of data for two reasons. First, to foreshad-
ow possible applications for a conventional designer, and 
second, to showcase the unique ability of deep neural net-
works to identify and reproduce latent patterns that usually 
require human mastery. Designing a poster according to the 
high standards of professional artists requires years of de-
veloping the right aesthetic intuition as it goes well beyond 
aligning shapes on primary axes.

Due to the high visual complexity of the already 
limited training data, the generated posters have low fidelity 
and mostly generate abstract shapes. As generative models 
begin to be able to reproduce typography, this quality issue 
should be partly resolved in the future.

For more robust datasets, StyleCLIP is capable 
of adjusting a large range of parameters. Using the LSUN 
churches dataset, one can change how prominent gothic 
architecture is in the generated building, how many trees are 
visible, or whether the facade is made of bricks. A user can 
either only change the color of a generated car by utilizing 
a high β threshold while leaving the base image untouched, 
or make a whole design look more like a sports car or a van. 
Interestingly, the system is able to distill complex design pat-
terns. When the prompt “BMW” is used with a high β thresh-
old on a car, the output only splits the front grill in two. This is 
called a “kidney grille”, a detail that serves as the signature 
design feature of BMW cars. 

The Pixel Alchemist GUI in use. Four sliders are actively 
controlling the amount of trees and the weather in the generated im-
age, as well as the materiality and size of the church.

StyleCLIP global directions can target very specific proper-
ties of an image, like the color of a car. The prompt “BMW” may add 
a kidney grille to an artificial car as it is a distinctive visual feature of 
that brand.

P. 12–13: A grid of artificial posters generated with a Style-
GAN2 ADA model trained on graphic design posters.

1Courtesy of: typo/graphic 
posters, André Felipe 
Menezes, www.typo-
graphicposters.com
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Noteworthy is also the ability to move in the oppo-
site direction of a text prompt by applying a negative α val-
ue. This applies the opposite effect of whatever prompt the 
user entered and thus offers an even more nuanced way of 
instructing the generator. Imagine a car designer who has 
gotten the feedback that their design looks too sporty. The 
designer could type in the prompt “sports car” and simply 
apply a negative value. The unique advantage I propose with 
Pixel Alchemist is the use of multiple parameters in parallel. 
A designer can dynamically add and remove any of the pre-
viously mentioned parameters and iteratively adjust each 
individual slider. This creates a new design process where a 
designer has to first, think of text prompts that serve as se-
mantic building blocks describing the output and second, 
gradually adjust the impact of each of these building blocks 
to their liking.

9 SYSTEM INFRASTRUCTURE

Making the system accessible to a wide audience 
was a primary goal of this project. The software runs on a 
self-contained Google Colaboratory notebook which pro-
vides the code, a ready-to-use software environment, and the 
computer hardware necessary to run it. Part of this code is a 
flask server that delivers a dynamically generated HTML file 
to a public webserver where a user can access the graphical 
web interface and see generated results update in realtime.

10 BIAS

The generative models utilized in this project are 
biased. The neural networks used in CLIP and StyleGAN can 
only find and reproduce rules that were present in the train-
ing data. The more a pattern is present in the training set, 
the more the program will recognize it as a rule and follow it 
during inference. A dataset that is taken from a biased world 
will therefore always produce biased results unless exhaus-
tive measurements are taken to remove these biases from 
the data or counter them in the learning architecture. This 
bias is especially visible when generating human faces. 
Simply entering certain races as a prompt, for example, can 
add glasses to a face or affect their facial expression with a 
low β threshold.

The potential for harmful effects caused by am-
plifying biases with machine learning systems also applies 
to this project. I attempt to address this issue by showing a 
highlighted note explaining this bias whenever a user selects 
a face-generating dataset. While this does not remove all 
potential for harm, it does clearly hinder users from claiming 
that the generated results would provide any fundamental 
truths about society.

The hardware setup of PixelAlchemist. A MIDI slider array connects 
to a laptop running the Google Colaboratory notebook.
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11 DISCUSSION AND LIMITATIONS

GANs require huge amounts of data and can-
not produce accurate results unless that data has a strong 
commonality. This is an important reason why GANs are tra-
ditionally benchmarked with human faces as they are sym-
metric with relatively little variance. In contrast, the LSUN car 
dataset cannot reliably generate realistic images of cars. It 
regularly creates distorted vehicles or even unrecognizable 
objects. The GAN model trained on posters suffered from a 
very limited amount of training images and an extraordinarily 
high degree of visual diversity. This resulted in an unstable 
training process and abstract results. This abstraction ren-
ders many global CLIP directions ineffective.

It is important to highlight that these limitations 
arise solely from the availability of data and the ability of a 
chosen GAN to handle diverse yet small datasets. As long as 
research on generative frameworks continues to improve, 
the same approach to global directions can likely be used to 
achieve dramatically better results. Very large diffusion mod-
els like DALL-E 2 have recently suggested that such issues 
on visual diversity and quality may have already been solved.

These problems also explain the lack of models 
that synthesize media that is actually useful to designers. 
Human faces, while very suitable to showcase the ability 
of StyleGAN, are hardly relevant for most design process-
es. However, once generative frameworks become good at 
producing high-quality results with small amounts of diverse 
data, we can directly integrate them into systems like Pixel 
Alchemist to study the full potential for designers with data-
sets that generate floor plans, 3D models, 2D graphic lay-
outs, and even fonts.

12 OUTLOOK

Allowing people to fluently communicate the vi-
sual concepts they imagine to a computer using natural lan-
guage will significantly alter the way we design with com-
puters. Most adult humans are already capable of verbally 
describing ideas in great detail with a large range of rhetor-
ical methods. Utilizing this skill for human-computer inter-
action could therefore drastically lower the complexity and 
effort needed to generate any desired image, and even text, 
video, audio, 3D model, or trajectory of a physical robot. Tra-
ditional software has been limited either by its inability to 
translate fuzzy input into meaningful output or by its inabil-
ity to scale as every additional generative function requires 
manual engineering. Considering that the deep learning 
systems mentioned here have already solved both issues, it 
becomes easy to imagine that they can have a major impact 
on the way we design with computers.

The historic success of skeuomorphic principles 
in human-computer interaction suggests that future soft-
ware will fluently interface with the immensely complex 
system we call natural human language. Eventually, we will 
instruct computers by referencing analogies, metaphors, 
and anecdotes to communicate the highly nuanced visions 
in our heads. Pixel Alchemist is designed to be an evolving 
platform that not just outlines this future but one that offers 
primitive yet direct access to it today.

Special thanks to André Felipe and Flávia Menezes from typo/graph-
ic posters for supporting this project with data, my collaborator Xinyi Zhu, my 
advisers Prof. Kyle Steinfeld and Prof. Eric Paulos, my father, mother, and sisters 
for their continued support, and my beloved friends from Berkeley who have 
been my most valuable resource over the past two years.
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CODE

The code is stored and hosted at GitHub and can 
be found at: https://github.com/titusss/Pixel Alchemist.git


